

Methods for Short Term Projections in epidemics (Projections Package)

Pierre Nouvellet, Anne Cori, Thibaut Jombart, Sangeeta Bhatia

pierre.nouvellet@sussex.ac.uk

Structure

Context

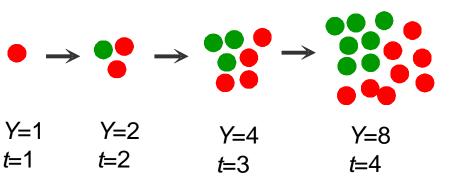
- Basic principle: from model to inference to predictions?
- Caveats

Structure

- What do I mean by projections/forecasts/predictions?
 - Projections: short term not mechanistic taking current trend and continuing
 - Forecasts: relies on somehow more mechanistic model but typically assumes conditions in future remain stable
 - Predictions: relies on understanding the system and making hypothesis about future conditions – closer scenario modelling

Projection/Forecasting

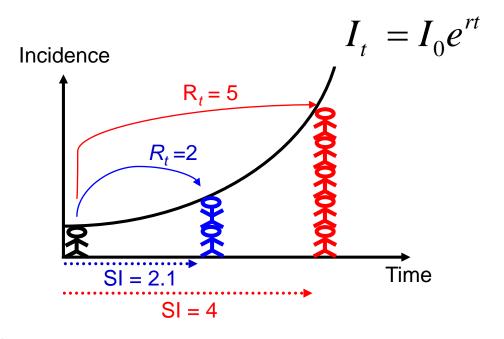
- Importance, especially in context of public agencies and stakeholders:
 - Advocacy and planning
 - Monitoring the situation
 - Implementation/evaluation of control strategies
- Challenges:
 - Uncertainties surrounding the data
 - Uncertainties surrounding the dynamics of transmission
- In such context, we initially focussed on projecting case incidence:
 - Pro: Robust methodology
 - Con: weak mechanistic underlying model, so limited use for modelling the impact of interventions



The reproduction number

 Basic reproduction number R₀: average number of secondary cases generated by an index case in a large entirely susceptible population

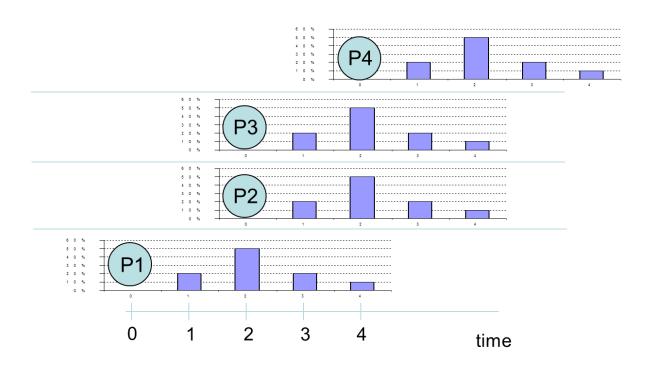
- Effective reproduction number R_t
 → equivalent at time t
- Incidence $R_{t} = 5$ $R_{t} = 2$ SI = 2.1 SI = 4



Estimation of R0 and Rt:

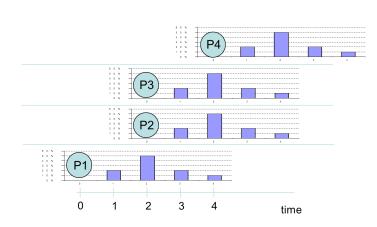
As long as there is a large proportion of susceptibles in the population, the epidemic will grow exponentially R0 (later we define Rt)

The serial interval (time between symptoms onset of infector and symptoms onset of infectee), informs on the value of R_t



Distribution of serial interval: w_t

proxy for infectiousness: when the R0/t new infection will occur



Distribution of serial interval: w_t

proxy for infectiousness: when the R0/t new infection will occur

$$I_t = \mathcal{P}\left(R_t \sum_{s=1}^t I_{t-s} w_{t-s}\right)$$

Same equation used to:

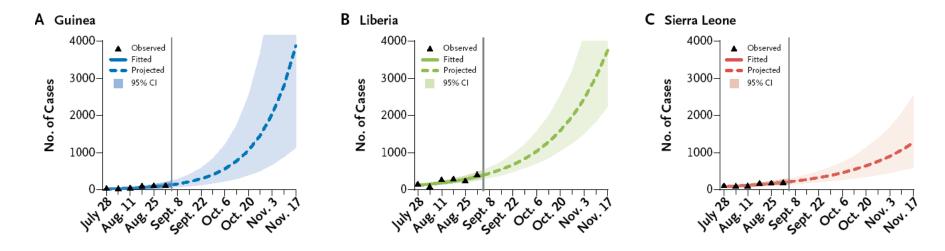
- Infer R_t
- Project I_t in the future (typically assuming the last observed R_t remain constant)

Given knowledge of the serial interval distribution, we are able:

• Estimate R_t , doubling time

Given a time-series of incident cases and knowledge of R_t , we are able to:

 Predict the future number of cases (should the situation remains the same) - Projections

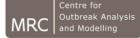

$$I_t = \mathcal{P}\left(R_t \sum_{s=1}^t I_{t-s} w_{t-s}\right)$$

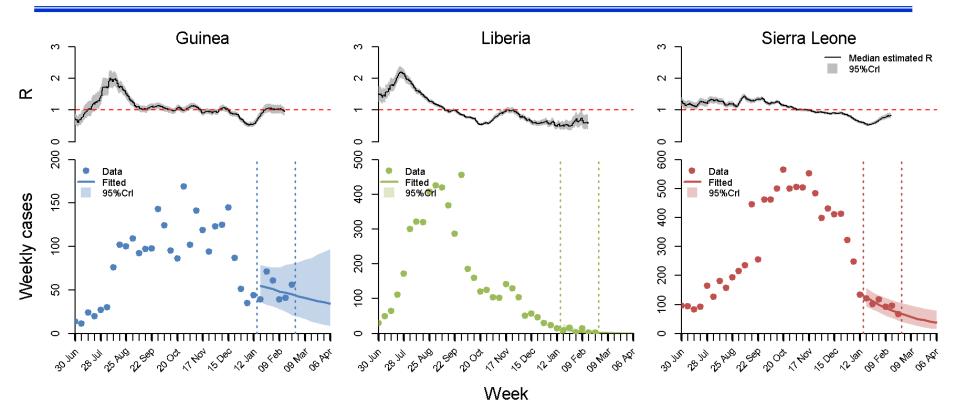
How quickly was the virus spreading? Imperial College London September 2014

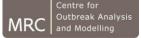
	Centre for
MRC	Outbreak Analysis and Modelling

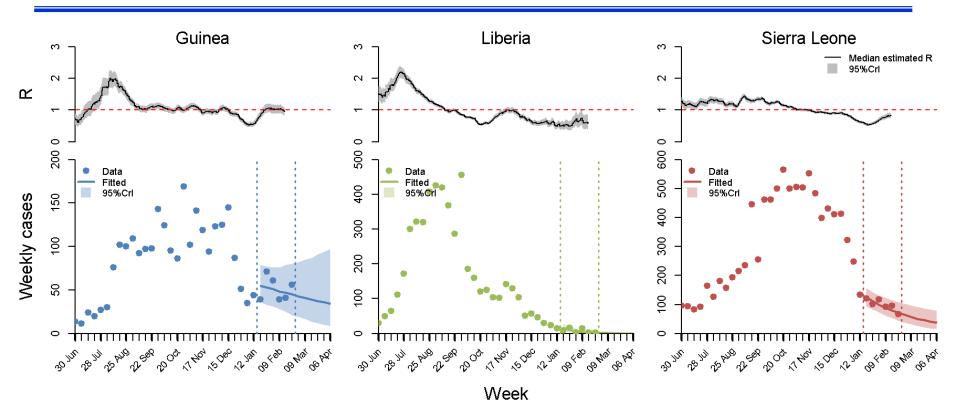
	Guinea	Liberia	Sierra Leone
R _t	1.81	1.51	1.38
	(1.60–2.03)	(1.41–1.60)	(1.27–1.51)
Initial doubling time (days)	15.7	23.6	30.2
	(12.9–20.3)	(20.2–28.2)	(23.6–42.3)

Important for advocacy, planning



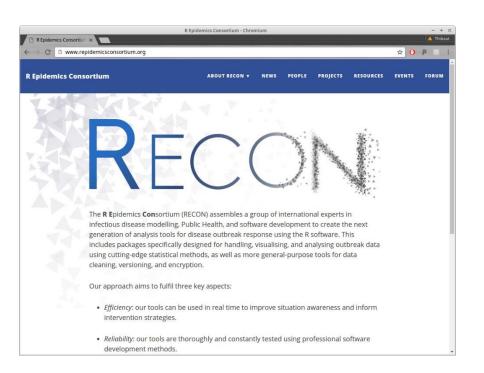

How quickly was the virus spreading? Imperial College London **March 2015**

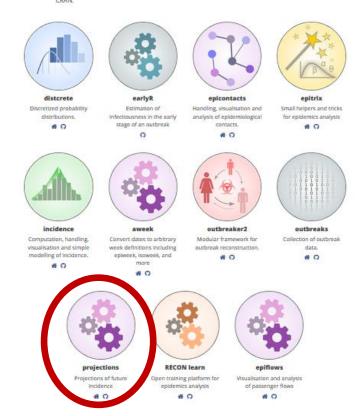

How quickly was the virus spreading? Imperial College London **March 2015**



How quickly was the virus spreading? Imperial College London **March 2015**

	Guinea	Liberia	Sierra-Leone
	0.93 (0.77 ; 1.09)	0.43 (0.26 ; 0.68)	0.82 (0.74 ; 0.91)
Time to extinction	> 1 year (2015-07-16, > 1 year)	2015-03-22 (2015-02-18, 2015-06-12)	2015-11-22 (2015-07-13, > 1 year)

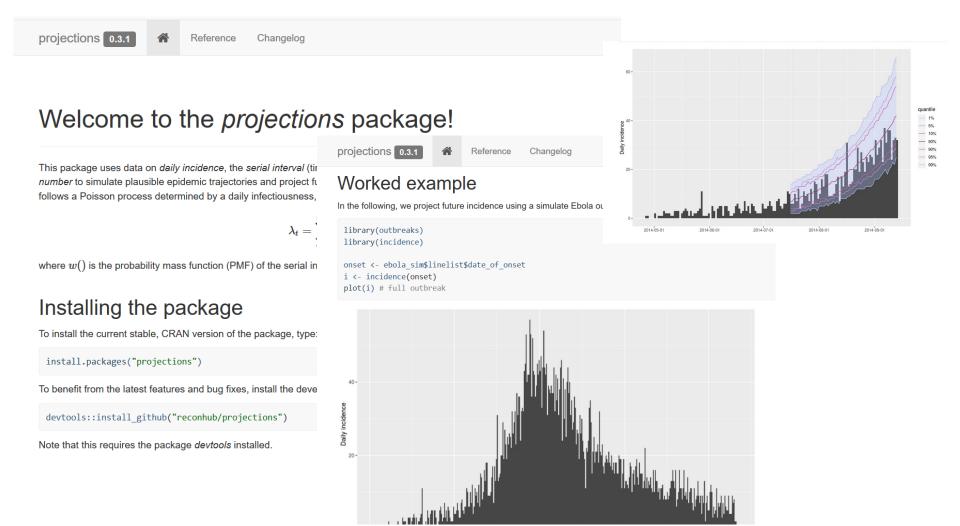

Implementation


Implemented in a R package available in Recon website

(projection

Released projects and packages

These projects are in a usable form. Packages have been developed following RECON's standards, are fully functional, documented and tested, and have been released on



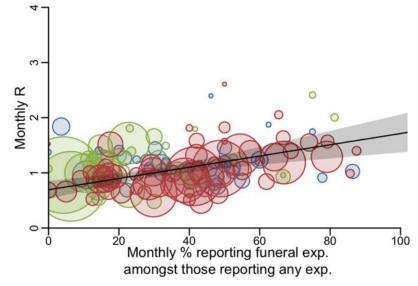
Implementation

Implemented in a R package available in Recon website

From projections to forecasting?

Can we say more about the determinants of Ebola dynamics?

Exposure patterns driving Ebola transmission in West Africa International Ebola Response Team (2016), *PLoS Medicine*

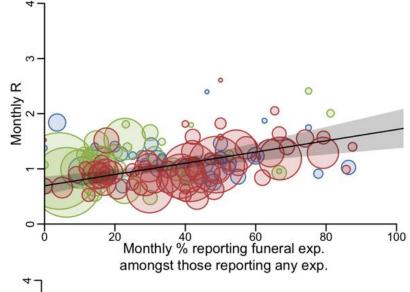

From projections to forecasting?

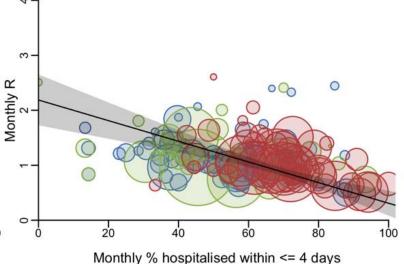
Can we say more about the determinants of Ebola dynamics?

Reproduction number for a given month was correlated with:

 % of individuals reporting funeral exposure (positive correlation)

From projections to forecasting?



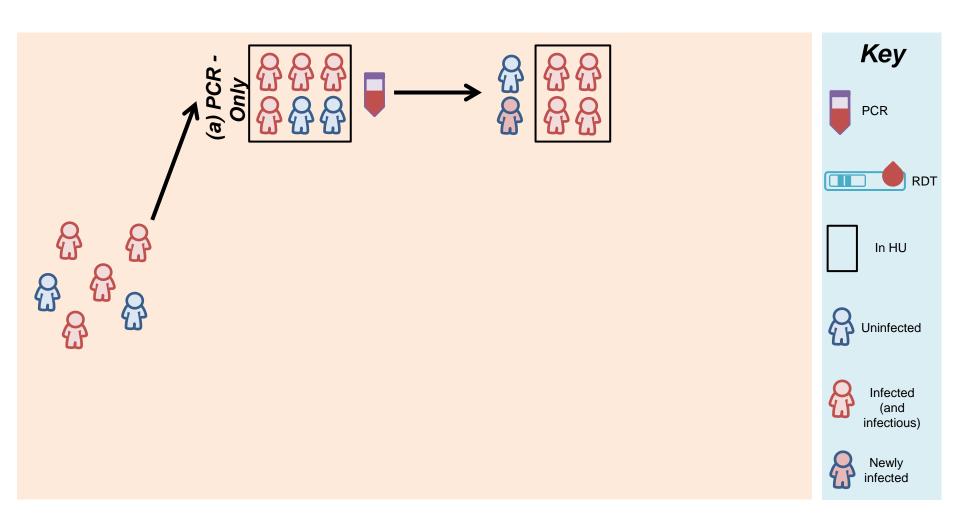

Can we say more about the determinants of Ebola dynamics?

Reproduction number for a given month was correlated with:

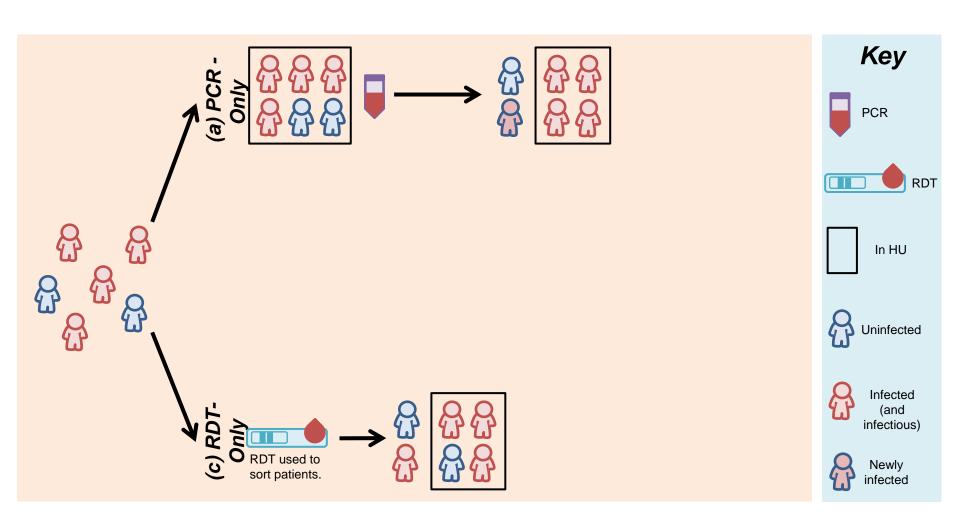
 % of individuals reporting funeral exposure (positive correlation)

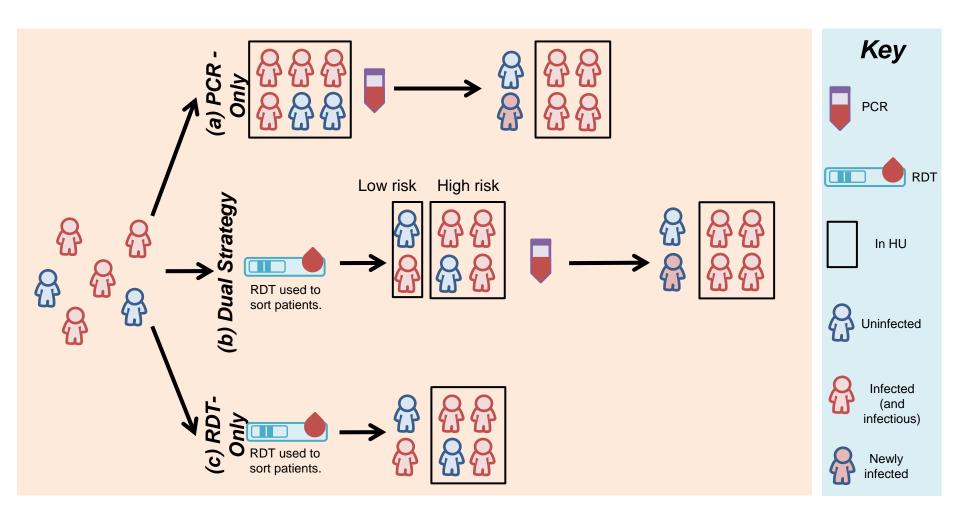
 % of individuals hospitalised within 4 days (negative correlation)

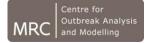
From projections to predictions?

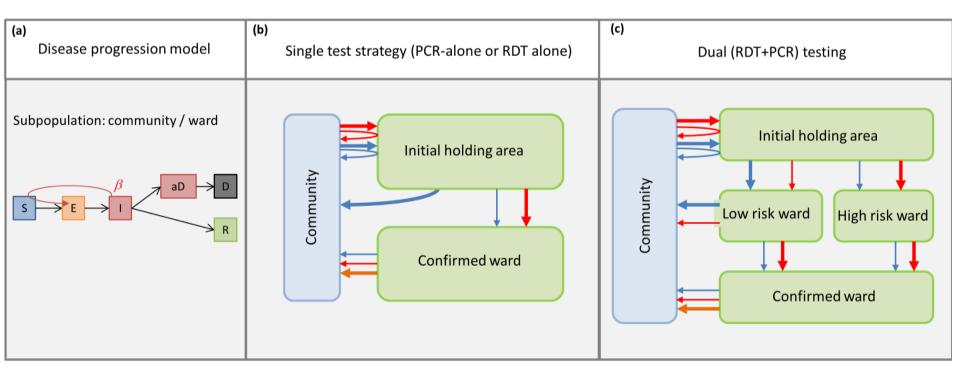

Can we make predictions if conditions were different?

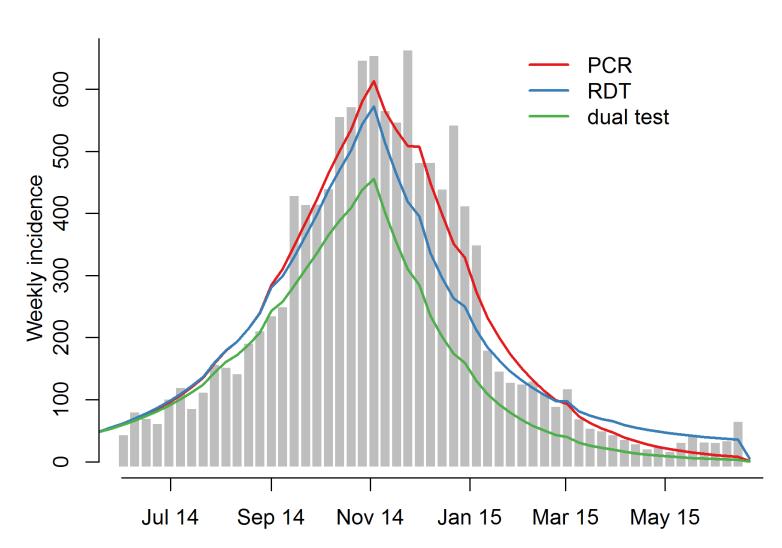
From projections to predictions?

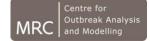

Imperial College London

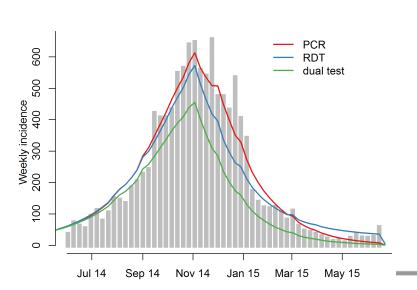


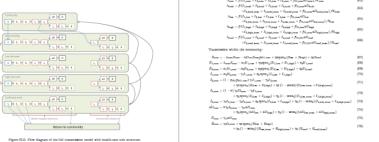











From projections to predictions?

Imperial College London

- But requires even better understanding of the dynamics:
 - Easy to construct,
 - Hard to parameterise,
 - Can be hard to interpret results.

Transmission within the initial holding ward, infection within a health-care unit:			
$\dot{S}_{hold} = -\lambda_{hold}S_{hold} + \kappa D_{hol}S_{non}p_{RU,nor} - \eta_1S_{hold}$	(77)		
$E_{1,\text{hold}} = \lambda_{\text{hold}} S_{\text{hold}} - (a_1 + \eta_1) E_{1,\text{hold}}$	(79)		
$E_{2,\text{hold}} = \alpha_2 E_{1,\text{hold}} - (\alpha_2 + \eta_1) E_{2,\text{max}}$	(79)		
$I_{1,hold} = \alpha_0 H_{2,hold} - (\gamma_1 + \eta_1) I_{1,hold}$	(80)		
$I_{2,\mathrm{bold}} = \gamma_1 I_{1,\mathrm{bold}} - (\gamma_2 + \eta_1) I_{3,\mathrm{bold}}$	(RI)		
$I_{3,hold} = (1 - \pi) \gamma_0 I_{3,hold} - (\gamma_3 + \eta_1) I_{3,hold}$	(R2)		
$I_{4,\text{hold}} = \gamma_5 I_{3,\text{hold}} - (\gamma_4 + \eta_1) I_{4,\text{hold}}$	(903)		
$aD_{hold} = \pi \gamma_0 I_{3,hold} - (\gamma_D + \eta_1) aD_{hold}$	(84)		
$\hat{D}_{hold} = \gamma m D_{hold}$	(RG)		
$\dot{R}_{\rm bold} = \gamma_0 I_{\rm Ljoid} - \gamma_1 R_{\rm bold}$	(86)		
Transmission within the initial holding ward, infletion within the community:			
$I_{2,\text{local},\text{incom}} = p_{\text{BH2}}p_{\text{BH2},\text{mere}}\gamma_1I_{1,\text{meas}} - (\gamma_2 + \eta_1)I_{2,\text{local},\text{incom}}$	(87)		
$I_{3,\text{lockl,jerom}} = (1 - \pi) \gamma_3 I_{3,\text{lockl,jerom}} - (\gamma_3 + \eta_1) I_{3,\text{lockl,jerom}}$	(989)		
$I_{4,\text{bolt,inom}} = \gamma n I_{3,\text{bolt,inom}} - (\gamma t + \eta t) I_{4,\text{bolt,inom}}$	(86)		
$aD_{bull,loom} = \pi \gamma_0 I_{0,bull,loom} - (\gamma_D + \eta_1) aD_{bull,loom}$	(90)		
$\hat{D}_{hold,journ} = \gamma_D a D_{hold,journ}$	(91)		
$R_{\text{bridd,jerom}} = \gamma_0 I_{\text{d,bridd,jerom}} - \eta_1 R_{\text{bridd,jerom}}$	(92)		
Transmission within the low-risk ward, infection within a health-ears unit:			
$\hat{S}_{loc} = -\lambda_{loc}S_{loc} - \eta_2S_{loc} + \eta_1 spec_1S_{local}$	(90)		
$\hat{E}_{1,low} = \lambda_{low} S_{low} - (\alpha_1 + \eta_1) E_{1,low} + \eta_1 spec_1 E_{1,look}$	(1941)		
$E_{1,loc} = arE_{1,loc} - (au + \eta u)E_{1,loc} + \eta uspec_1E_{1,loc}$	(DC)		
$I_{1,low} = \alpha_2 E_{2,low} - (\gamma_1 + \eta_2) I_{1,low} + \eta_1 exc_1 I_{1,look}$	(DG)		
$\hat{I}_{2,loc} = \gamma_1 I_{1,loc} - (\gamma_2 + \eta_2) I_{2,loc} + \eta_1 \text{spec}_1 I_{2,lock}$	(DT)		
$I_{3,low} = (1 - \pi) \gamma_2 I_{3,low} - (\gamma_1 + \eta_2) I_{3,low} + \eta_1 spec_1 I_{3,loid}$	(1961)		
$I_{4,low} = \gamma_5 I_{3,low} - (\gamma_4 + \eta_5) I_{4,low} + \eta_5 spec_5 I_{4,look}$	(1961)		
$aD_{loc} = \pi \gamma a D_{loc} - (\gamma v + \eta s) aD_{loc} + \eta s s p s c_1 aD_{loc}$	(100)		
$D_{bw} = \gamma_D a D_{bw}$	(101)		
$\hat{\Pi}_{low} = \gamma_0 I_{4,low} - \eta_0 \Pi_{low} + \eta_1 \text{space}_1 \Pi_{look}$	(102)		
Transmission within the low-risk ward, inflorion within the community:			
$\hat{I}_{0,low,jerm} = -(\gamma_0 + \eta_0) I_{0,low,jerm} + \eta_1 (1 - mess_1) I_{0,lodd,jerm}$	(100)		
$I_{2,\mathrm{low},\mathrm{jeam}} = (1-\pi)\gamma_2 I_{2,\mathrm{low},\mathrm{jeam}} - (\gamma_2 + \eta_2)I_{2,\mathrm{low},\mathrm{jeam}} + \eta_1(1-\mathrm{wes}_1)I_{2,\mathrm{lodd},\mathrm{jeam}}$	(104)		
$I_{4,\text{low},\text{low}} = \gamma_2 I_{3,\text{low},\text{low}} - (\gamma_4 + \eta_2) I_{4,\text{low},\text{low}} + \eta_1 (1 - \text{sens}_1) I_{4,\text{look},\text{low}}$	(105)		
$aD_{\text{total joins}} = \pi \gamma aB_{\text{joins, joins}} - (\gamma v + \eta v) aD_{\text{total joins}} + \eta v (1 - \text{security}) aD_{\text{total joins}}$	(106)		
$D_{low,jerm} = \gamma_D a D_{low,jerm}$	(107)		
i	d topoli.		

The state of the s	
$\dot{S}_{high} = -\lambda_{high} S_{high} - \eta_2 S_{high} + \eta_1 (1 - spec_1) S_{hold}$	(109)
$\hat{E}_{1,high} = \lambda_{high} S_{high} - (\alpha_1 + \eta_2) E_{1,high} + \eta_1 (1 - spec_1) E_{1,hold}$	(110)
$\dot{E}_{2,high} = \alpha_1 E_{1,high} - (\alpha_2 + \eta_2) E_{2,high} + \eta_1 (1 - spec_1) E_{2,hold}$	(111)
$\hat{B}_{1,\text{begin}} = \text{craffe}_{1,\text{begin}} - (\gamma v + \eta v) B_{1,\text{begin}} + \eta v (1 - \text{spec}_1) B_{1,\text{begin}}$	(112)
$I_{2,high} = \gamma_1 I_{1,high} - (\gamma_2 + \eta_2) I_{2,high} + \eta_1 (1 - spec_1) I_{2,held}$	(113)
$\hat{I}_{3,high} = (1 - \pi) \gamma_0 I_{2,high} - (\gamma_2 + \eta_2) I_{3,high} + \eta_1 (1 - \pi \rho c c_1) I_{3,held}$	(114)
$I_{4,high} = \gamma_5 I_{3,high} - (\gamma_4 + \eta_2) I_{4,high} + \eta_1 (1 - spec_1) I_{4,hold}$	(115)
$aD_{high} = \pi \gamma_0 I_{0,high} - (\gamma_D + \eta_0) aD_{high} + \eta_1 (1 - \pi pos_1) aD_{hold}$	(116)
$\hat{D}_{high} = \gamma_D a D_{high}$	(117)
$R_{high} = \gamma_0 I_{A,high} - \gamma_0 R_{high} + \gamma_1 (1 - spec_1) R_{hold}$	(118)
Transmission within the high-risk ward, infection within the community:	
$\hat{I}_{2,\text{high,loom}} = -\left(\gamma_1 + \eta_2\right)I_{2,\text{high,loom}} + \eta_1 \text{sens}_1 I_{2,\text{hold,loom}}$	(119)
$\hat{I}_{2,\text{high,imm}} = (1 - \pi) \gamma_{1} I_{2,\text{high,imm}} - (\gamma_{1} + \eta_{2}) I_{2,\text{high,imm}} + \eta_{1} \pi \pi \pi I_{2,\text{hold,imm}}$	(120)
$I_{4,\mathrm{high,imm}} = \gamma_2 I_{2,\mathrm{high,imm}} - (\gamma_4 + \eta_2) I_{4,\mathrm{high,imm}} + \eta_1 \mathrm{secus}_1 I_{4,\mathrm{hold,imm}}$	(121)
$aD_{\text{high,loom}} = \pi \gamma_2 I_{2,\text{high,loom}} - (\gamma_D + \eta_2) aD_{\text{high,loom}} + \eta_1 \text{sects}_1 aD_{\text{hidd,loom}}$	(122)
$\hat{D}_{high,imm} = \gamma_D a D_{high,imm}$	(122)
$\hat{H}_{high,imm} = \gamma_1 I_{h,high,imm} - \eta_2 R_{high,imm} + \eta_1 mm_1 R_{hold,imm}$	(124)
Transmission within the confirmed ward, infection within a health-care unit:	
$\dot{S}_{mad} = -\lambda_{mad}S_{mad} + \eta_2 (1 - spec_2)(S_{low} + S_{high}) - \eta_4S_{mad}$	(125)
$\hat{E}_{1,mad} = \lambda_{mad} S_{mad} - \alpha_1 E_{1,mad} + \eta_2 (1 - \text{spec}_2) (E_{1,low} + E_{1,loigh}) - \eta_k E_{1,mad}$	(126)
$\dot{E}_{2,mad} = a_1 E_{1,mad} - a_2 E_{2,mad} + \eta_2 (1 - spec_2) (E_{2,loc} + E_{2,high}) - \eta_2 E_{2,mad}$	(127)
$\hat{I}_{1,\text{mod}} = \text{ort}(1,\text{mod} - \gamma_1 I_{1,\text{mod}} + \gamma_2 I_{1} - \text{spec}_2)(I_{1,\text{mod}} + I_{1,\text{log}_1})$	(128)
$I_{2,mad} = \gamma_1 I_{1,mad} - \gamma_2 I_{2,mad} + \eta_2 (1 - s_2^{max}) (I_{2,low} + I_{2,logk})$	(129)
$\hat{I}_{2,mad} = (1 - \pi) \gamma_2 I_{2,mad} - \gamma_2 I_{2,mad} + \eta_2 (1 - \text{xpec}_2) (I_{2,low} + I_{2,logh})$	(130)
$I_{4,\text{read}} = \gamma_2 I_{2,\text{read}} - \gamma_4 I_{4,\text{read}} + \gamma_5 (1 - \text{space}_0) (I_{4,\text{low}} + I_{4,\text{high}})$	(131)
$aD_{mad} = \pi \gamma_2 I_{2,mad} - \gamma_D aD_{mad} + \eta_2 (1 - \operatorname{spec}_2) (aD_{hor} + aD_{high})$	(132)
$D_{mad} = \gamma_D a D_{mad}$	(130)
$R_{mad} = \gamma_k I_{k,mad} + \eta_k \left(1 - \operatorname{spac}_k\right) \left(R_{kw} + R_{high}\right) - \eta_k R_{mad}$	(134)
Transmission within the confirmed ward, infection within the community:	
$I_{2,mat,loom} = -\gamma_2 I_{2,mat,loom} + \gamma_2 \text{nesses}_2 \left(I_{2,low,loom} + I_{2,high,loom} \right)$	(135)
$\hat{B}_{ijml,loom} = (1 - \pi) \gamma_{i} f_{1jml,loom} - \gamma_{i} f_{2jml,loom} + \gamma_{i} m_{i} r_{i} r_{i}$	(136)
$I_{4,mat,loom} = \gamma_0 I_{3,mat,loom} - \gamma_4 I_{4,mat,loom} + \eta_4 accs_1 (I_{4,loo,loom} + I_{4,bigh,loom})$	(1317)
$aD_{mal,inm} = \pi \gamma_0 I_{2,mal,inm} - \gamma_D aD_{mal,inm} + \eta_0 mn_0 (aD_{lw,inm} + aD_{high,inm})$	(128)
$D_{mal,loom} = \gamma_D a D_{mal,loom}$	(139)
$\dot{R}_{mat,loom} = \gamma_0 I_{4,mat,loom} + \eta_0 m c s_0 (R_{low,loom} + R_{high,loom}) - \eta_0 R_{mat,loom}$	(140)
Here, the same state variables as in the simpler transmission model without hospitalisation a but subscripted with 'com', 'hold', 'low', 'high', 'cont' to indicate the subpopulation: the commu	no used, nity, the

Caveats for projections

- When using projections, things to consider:
 - Caveats linked to estimation of transmissibility (e.g. epiestim issues if level reporting changes or delay in reporting)
 - Assume constant transmissibility in the future to be used for short term projections (few serial intervals)
 - Be aware of the importance of accounting for
 - Delay in reporting
 - Uncertainty in current situation before projecting in the future (nowcasting)
 - Heterogeneity in transmission

Caveats for projections

Heterogeneity in transmission

SARS and heterogeneity in transmission

The cases of Amoy garden:

- over 300 cases
- Concentrated in 4 blocks
- Required quarantine
- Linked to drainage system

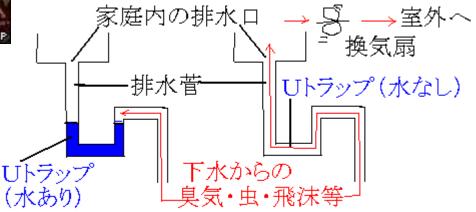
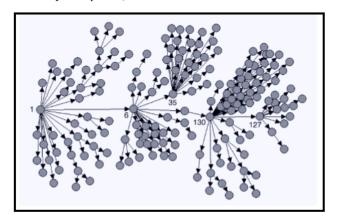


図3. Uトラップ(水なし)からの下水飛沫の侵入

SARS and heterogeneity in transmission

SARS and heterogeneity in transmission


Reproduction number:

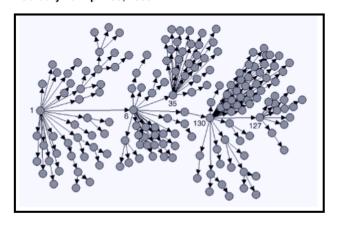
The number of cases one case generates on average over the course of its infectious period

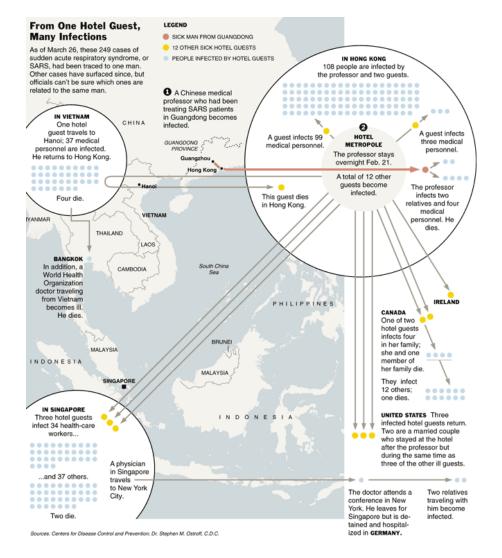
Contagion

FIGURE 2. Probable cases of severe acute respiratory syndrome, by reported source of infection* — Singapore, February 25–April 30, 2003

Typically require detailed investigation

SARS and heterogeneity in transmission




SARS and heterogeneity in transmission

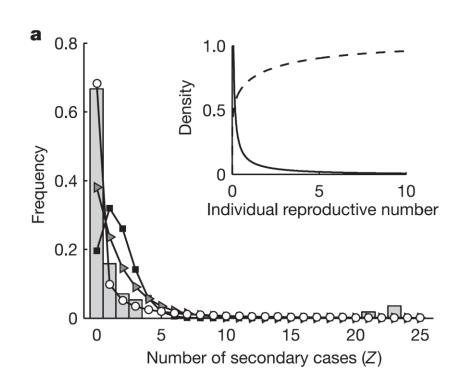
Reproduction number:

The number of cases one case generates on average over the course of its infectious period, **BUT...**

FIGURE 2. Probable cases of severe acute respiratory syndrome, by reported source of infection* — Singapore, February 25–April 30, 2003

Imperial College London

and heterogeneity in transmission



Simplest case, assumes:

- Number of secondary cases for each infectious individual follows a Poisson distribution (offspring distribution)
- Same mean for everyone (R)

Increased heterogeneity, assumes:

- Individual 'offspring distribution' is still Poisson
- Individual R is gamma distributed (not the same for everyone)
- Negative binomial offspring distribution for the population

Vol 438|17 November 2005|doi:10.1038/nature04153

nature

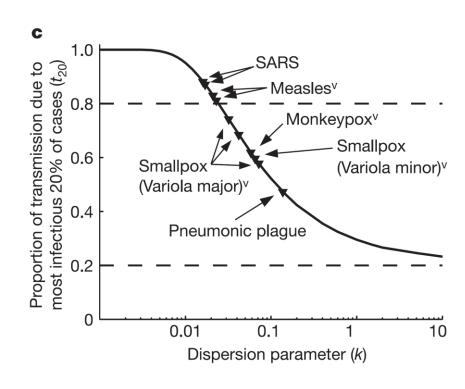
LETTERS

Superspreading and the effect of individual variation on disease emergence

J. O. Lloyd-Smith^{1,2}, S. J. Schreiber³, P. E. Kopp⁴ & W. M. Getz¹

Imperial College London

and heterogeneity in transmission



Simplest case, assumes:

- Number of secondary cases for each infectious individual follows a Poisson distribution (offspring distribution)
- Same mean for everyone (R)

Increased heterogeneity, assumes

- Individual 'offspring distribution' is still Poisson
- Individual R is gamma distributed (not the same for everyone)
- Negative binomial offspring distribution for the population

Vol 438|17 November 2005|doi:10.1038/nature04153

nature

LETTERS

Superspreading and the effect of individual variation on disease emergence

J. O. Lloyd-Smith^{1,2}, S. J. Schreiber³, P. E. Kopp⁴ & W. M. Getz¹

Imperial College London

MRC Centre for Outbreak Analysis and Modelling

and heterogeneity in transmission

Simplest case, assumes:

- Number of secondary cases for each infectious individual follows a Poisson distribution (offspring distribution)
- Same mean for everyone (R)

Implications for Projections

$$I_t = \mathcal{P}\left(R_t \sum_{s=1}^t I_{t-s} w_{t-s}\right)$$

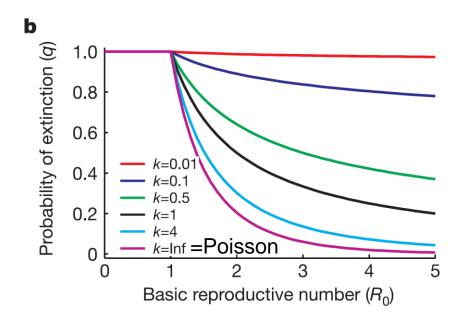
Increased heterogeneity, assumes:

- Individual 'offspring distribution' is still Poisson
- Individual R is gamma distributed (not the same for everyone)
- Negative binomial offspring distribution for the population

$$I_{t} = NB \left(R_{t} \sum_{s=1}^{t} I_{t-s} w_{t-s}, \delta \right)$$

Imperial College London

and heterogeneity in transmission


Simplest case, assumes:

- Number of secondary cases for each infectious individual follows a Poisson distribution (offspring distribution)
- Same mean for everyone (R)

Increased heterogeneity, assumes:

- Individual 'offspring distribution' is still Poisson
- Individual R is gamma distributed (not the same for everyone)
- Negative binomial offspring distribution for the population

Implications for outbreak extinctions

Vol 438|17 November 2005|doi:10.1038/nature04153

natu

LETTERS

Superspreading and the effect of individual variation on disease emergence

Thank you!